
Stabilization of Routing in Directed Networks

Jorge A. Cobb1 and Mohamed G. Gouda2

1 Department of Computer Science (EC 31)
The University of Texas at Dallas, Richardson, TX 75083-0688

jcobb@utdallas.edu
2 Department of Computer Sciences, The University of Texas at Austin

Austin, TX 78712-1188
gouda@cs.utexas.edu

Abstract. Routing messages in a network is often based on the assump-
tion that each link, and so each path, in the network is bidirectional. The
two directions of a path are employed in routing messages as follows. One
direction is used by the nodes in the path to forward messages to their
destination at the end of the path, and the other direction is used by
the destination to inform the nodes in the path that this path does lead
to the destination. Clearly, routing messages is more difficult in directed
networks where links are unidirectional. (Examples of such networks are
mobile ad-hoc networks and satellite networks.) In this paper, we present
the first stabilizing protocol for routing messages in directed networks.
We keep our presentation manageable by dividing it into three (relatively
simple) steps. In the first step, we develop an arbitrary directed network
where each node broadcasts to every reachable node in the network. In
the second step, we enhance the network such that each node broadcasts
its shortest distance to the destination. In the third step, we enhance the
network further such that each node can determine its best neighbor for
reaching the destination.

1 Introduction

The routing of messages from a source node to a destination node is a funda-
mental problem in computing networks. In general, routing protocols are divided
into two broad categories [13]: link-state protocols and distance-vector protocols.
In link-state protocols, each node broadcasts a list of its neighbors to all nodes in
the network. Each node then builds in its memory the topology of the network,
and computes the shortest path to each destination. A total of O(n2) storage is
required to store this topology. Examples of link-state protocols include [7,14]. In
distance-vector protocols, each node forwards to all neighboring nodes a vector
with its distance to each destination. In this way, only O(n) storage is required.
Examples of distance-vector protocols include [1, 5, 6, 8, 12].

There is an implicit assumption in these protocols. It is assumed that each
link, and therefore each path, is bidirectional. The forward path from a source
node to a destination node is discovered by sending routing messages along this
path, and the backward path is used to inform the source of the existence of

A.K. Datta and T. Herman (Eds.): WSS 2001, LNCS 2194, pp. 51–66, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

52 Jorge A. Cobb and Mohamed G. Gouda

the forward path. However, new technologies are producing directed networks,
that is, networks with unidirectional links. An example is networks with satellite
links, since these links allow only unidirectional traffic [3, 4]. Another example
is mobile wireless networks, in particular, ad-hoc networks [9, 10]. In these net-
works, nodes communicate with each other via radio links. These links may be
unidirectional for several reasons. For example, there might be a disparity in the
transmission power of two neighboring nodes. Thus, only one node may be able
to receive messages from the other. In addition, if there is more interference at
the vicinity of one node, then the node with the higher interference is unable to
receive messages from its neighboring node.

Routing protocols that assume bidirectional links will fail in a directed net-
work [9,10]. That is, the shortest path to a destination will not be found when this
path contains unidirectional links. To remedy this shortcoming, new routing pro-
tocols have been developed that take unidirectional links into account [3,4,9,10].
Because routing protocols are essential in computing networks, it is desirable for
them to be stabilizing. A protocol is said to be stabilizing iff it converges to a nor-
mal operating state starting from any arbitrary state [2,11]. Although stabilizing
routing protocols exist for undirected networks, the protocols in [3, 4, 9, 10] for
directed networks have not been shown to be stabilizing. In [3,4], “tunnels” need
to be configured to go around single unidirectional links. Furthermore, this tech-
nique is not applicable to networks with an arbitrary number of unidirectional
links. In [9,10], the stabilization of the protocol is not addressed (unbounded se-
quence numbers are used, which may require an unbounded stabilization time.)

In this paper, we present the first stabilizing protocol for routing messages
in directed networks. We keep our presentation manageable by dividing it into
three (relatively simple) steps. In the first step, we develop an arbitrary directed
network where each node broadcasts to every reachable node in the network.
In the second step, we enhance the network such that each node broadcasts its
shortest distance to the destination. In the third step, we enhance the network
further such that each node can determine its best neighbor for reaching the
destination. In our network, each node is a process, and for simplicity, processes
communicate with each other via shared memory. A message passing implemen-
tation is briefly discussed in Section 8. In addition, we assume that the cost
of each link in the network is one. Thus, the shortest path (i.e., with the least
number of links) is found to each destination. It is straightforward to modify our
network to work with arbitrary positive costs assigned to each link.

2 Directed Networks

We consider a network of communicating processes that can be represented by a
directed graph. In this directed graph, each node represents a distinct process in
the network, and each directed edge from a process u to a process v represents
a possible flow of information from u to v. Specifically, a directed edge from a
process u to a process v indicates that each action of v can read the variables
of both u and v, but can write only the variables of v. Thus, the existence of

Stabilization of Routing in Directed Networks 53

a directed path from a process u to a process v indicates that information can
flow from u to v (via the intermediate processes in the directed path), and the
lack of a directed path from a process u to a process v indicates that information
cannot flow from u to v.

If there is a directed edge from a process u to a process v, then u is called a
backward neighbor of v and v is called a forward neighbor of u. In every process
u, two constant sets, B.u and F.u, are declared as follows.

const B.u : set of identifiers of all backward neighbors of u
F.u : set of identifiers of all forward neighbors of u

Without loss of generality, we assume that for each process u in a network, both
B.u and F.u are non-empty. Each process in the network has a unique identifier
in the range 0 . . n−1, where n is the number of processes in the network. Process
0 is called the network root.

3 Routing Trees

Information needs to flow from every process in a directed network to the net-
work root. To achieve this goal, every process u maintains the identifier of one of
its forward neighbors, the one closest to the network root, in a variable named
next.u. When the network reaches a stable state, the values of the next.u vari-
ables define a directed rooted tree where all the directed paths lead to the net-
work root. This tree is called a routing tree.

Also, every process u maintains the length of (i.e., the number of edges in)
the shortest directed path from u to the root in a variable called dist.u. When
the network reaches a stable state, the value of each dist.u variable defines the
length of the directed path from u to the root in the routing tree.

In fact, not every process in the network can be in the routing tree for two
reasons. First, if the network has no directed path from a process u to the root,
then information cannot flow from u to the root, and u cannot be in the routing
tree. Second, if the network has no directed path from any backward neighbor of
the root to a process u, then u cannot be informed of whether there is a directed
path from u to the root. In this case, no information flow will be attempted from
u to the root, and u cannot be in the routing tree.

From this discussion, u is in the routing tree of a network iff there is a back-
ward neighbor v of the network root such that the network has a directed path
from u to v and a directed path from v to u. The first path (from u to v) can
be used as a route for the information flow from u to the root, and the second
path (from v to u) can be used to inform u about the existence of the first path.
When the network reaches a stable state, if a process u is in the routing tree,
then the value of variable dist.u is in the range 0 . . n − 1; otherwise, the value
of variable dist.u is n.

As an example, consider the directed network in Fig. 1. There is no directed
path from processes 3 and 7 to process 0 (the root); thus, processes 3 and 7
cannot be in the routing tree. Also, there is no directed path from a backward

54 Jorge A. Cobb and Mohamed G. Gouda

neighbor of process 0 (i.e., from process 2) to processes 1 and 5; thus, processes
1 and 5 cannot be in the routing tree. For each of the other processes (i.e. pro-
cesses 2, 4, and 6), there is a backward neighbor of process 0 such that there
are a directed path from the process to the backward neighbor and a directed
path from the backward neighbor to the process. Thus, each of the processes 2,
4, and 6 is in the routing tree.

6

5

4

321

0

7

Fig. 1. A directed network.

The routing tree for this network is shown in Fig. 2. In this figure, the val-
ues of the two variables next.u and dist.u are written beside every process u.
Also, the network edges that belong to the routing tree are shown as solid lines,
whereas the other edges are shown as dashed lines.

6

5

4

321

0

7ext.5 = irrelevant
ist.5 = 8

next.1 = irrelevant
dist.1 = 8

next.2 = 0
dist.2 = 1

next.4 = 2
dist.4 = 2

next.6 = 4
dist.6 = 3

next.3 = irrelevant
dist.3 = 8

next.7 = irrelevant
dist.7 = 8

Fig. 2. The routing tree of the network in Fig. 1

Stabilization of Routing in Directed Networks 55

Next, we discuss how to make the processes in a directed network maintain
a routing tree. For simplicity, we divide our discussion into three steps. In the
first step, we discuss how to make each process u broadcast a local value x.u
to every other process (that can be reached via a directed path from u) in the
directed network. In the second step, we enhance the network process such that
each value x.u, which is broadcasted by process u, is the shortest distance from
u to the root. When the modified network reaches a stable state, each process
u knows the network distance vector that stores, for every process v in the net-
work, the shortest distance from v to the network root. In the third step, each
process u computes from its network distance vector the two values next.u and
dist.u needed for maintaining the routing tree. These three steps are discussed
in more detail in Sections 5, 6 and 7.

4 Network Notation

Before presenting our networks of processes, we first give a short overview of the
notation that we use in specifying our processes. For simplicity, our processes are
specified using a shared memory notation. In particular, each process is specified
by a set of constants, a set of variables, a set of parameters, and a set of actions.
A process is specified as follows.

process <process name>
const

<constant name> : <type>,
. . .
<constant name> : <type>

var
<variable name> : <type>,
. . .

<variable name> : <type>
par

<parameter name> : <type>,
. . .
<parameter name> : <type>

begin
<action>

[]
. . .

[]
<action>

end

The constants declared in a process can be read, but not written, by the
actions of that process. The variables declared in a process can be read by the
actions of that process and the actions of forward neighbors of that process. The

56 Jorge A. Cobb and Mohamed G. Gouda

variables declared in a process can be written only by the actions of that process.
Parameters are discussed below.

Every action in a process is of the form <guard> → <body>. The <guard>
is a boolean expression over the constants, variables, and parameters declared
in the process, and also over the variables declared in the backward neighbors of
that process. The <body> is a sequence of assignment statements that update
the variables of the process.

Each parameter declared in a process is used as a shorthand to write a set of
actions as one action. For example, if we have the following parameter definition,

par g : 1 . . 3

then the following action

x = g → x := x + g

is a shorthand notation for the following three actions.

x = 1 → x := x + 1
[]

x = 2 → x := x + 2
[]

x = 3 → x := x + 3

An execution step of a network consists of evaluating the guards of all the
actions of all processes, choosing one action whose guard evaluates to true, and
executing the body of this action. An execution of a network consists of a se-
quence of execution steps, which either never ends, or ends in a state where
the guards of all the actions evaluate to false. We assume all executions of a
network to be weakly fair, that is, an action whose guard is continuously true is
eventually executed.

5 Directed Broadcast

In this section, we discuss a directed network where each process u computes
an array X.u that has n elements, where n is the number of processes in the
network. When the network reaches a stable state, the vth element X [v].u in
array X.u has the value x.v that is local to process v.

In this network, each process u maintains, along with each element X [v].u,
two corresponding elements:

b[v].u = identifier of a backward neighbor of u from which u
has read the latest value of X [v].u

d[v].u = length of (i.e., number of edges in) the directed path along
which the value x.v (in v) is transmitted to X [v].u (in u)

Note that if the value of d[v].u ever becomes n, then process u recognizes
that it has not yet found a directed path from v to u and that the current value

Stabilization of Routing in Directed Networks 57

of X [v].u is probably incorrect. Thus, if the network has no directed path from
process v to process u, then the value of d[v].u stabilizes to n and the value of
X [v].u stabilizes to a probably incorrect value.

Each process u in the directed broadcast network is defined next. In this
definition, we use the expression a ⊕ b to mean min(a + b, n).

process u : 0 . . n − 1
const

B.u : set of identifiers of all backward neighbors of u

F.u : set of identifiers of all forward neighbors of u
x.u : 0 . . n {local constant in u}

var
X.u : array [0 . . n− 1] of 0 . . n,
b.u : array [0 . . n− 1] of B.u,
d.u : array [0 . . n− 1] of 0 . . n

par
v : 0 . . n− 1, { any process in the network }
w : B.u { any backward neighbor of u }

begin
X [u].u �= x.u ∨ d[u].u �= 0 →

X [u].u := x.u;
d[u].u := 0

[]
v �= u ∧ b[v].u = w ∧ (X [v].u �= X [v].w ∨ d[v].u �= d[v].w ⊕ 1) →

X [v].u := X [v].w;
d[v].u := d[v].w ⊕ 1

[]
v �= u ∧ d[v].w ⊕ 1 < d[v].u →

X [v].u := X [v].w;
b[v].u := w;
d[v].u := d[v].w ⊕ 1

end

Process u has three actions. In the first action, u ensures that X [u].u equals
its local constant x.u and d[u].u is zero. In the second action, u recognizes that
it has read the latest value of X [v].u from a backward neighbor w and so ensures
that X [v].u equals X [v].w and d[v].u equals d[v].w ⊕ 1. In the third action, u
recognizes there is a shorter directed path from v to u along its backward neigh-
bor w. In this case, u assigns to X [v].u the value of X [v].w, assigns to b[v].u the
value of w, and assigns to d[v].u the value d[v].w ⊕ 1.

This network maintains for every process u, a stabilizing, rooted, shortest-
path spanning tree T.u. The root of T.u is process u itself, and T.u contains
every process that is reachable from u via a directed path. The value of the
constant x.u flows from u over T.u to every process in T.u.

58 Jorge A. Cobb and Mohamed G. Gouda

6 Distance Vectors

In this section, we modify the network in the previous section such that the
value of each element X [v].u in each process u, when the network reaches a
stable state, is the shortest distance (i.e., the smallest number of edges in a di-
rected path) from process v to the network root. The modification is slight. The
second and third actions in every process remain the same as before. Only the
first action of each process u is modified to become as follows.

X [u].u �= f(u, F.u, X.u) ∨ d[u].u �= 0 →
X [u].u := f(u, F.u, X.u);
d[u].u := 0

Above, f(u, F.u, X.u) computes the shortest distance from u to the network root,
and is defined as follows.

f(u, F.u, X.u) = 0 if u = 0,
1 if u �= 0 ∧ 0 ∈ F.u,
(min over v, v ∈ F.u ∧ d[v].u < n, of X [v].u) ⊕ 1 otherwise

In the appendix, we present a proof of the stabilization of this network.

7 Maintaining a Routing Tree

To make the network in the previous section maintain a routing tree (as defined
in Section 3), each process u, u �= 0, is modified as follows. First, the following
two variables next.u and dist.u are added to process u.

var next.u : F.u,
dist.u : 0 . . n

Second, the following action is added to process u.

next.u �= h(F.u, X.u) ∨ dist.u �= X [u].u →
next.u := h(F.u, X.u);
dist.u := X [u].u

where

h(F.u, X.u) = the smallest identifier w in F.u such that
X [u].u = X [w].u ⊕ 1

8 Message Passing Implementation

In order to simplify our presentation, processes in our network communicate
with their neighbors using shared memory. In this section, we discuss a message
passing implementation of our network.

Stabilization of Routing in Directed Networks 59

We first address the construction of the shortest spanning trees discussed in
Section 5. In our shared memory model, each process reads array d from each of
its backward neighbors. To implement this, each process places the contents of
its d array into a message, and periodically sends this message to all its forward
neighbors. We will refer to this message as the spanning-tree message. Since
array d has n entries, the size of the spanning-tree message is O(n).

We next address the broadcast of the distance to the root (i.e. X [u].u) by
every process u. To implement this, each process u places its distance to the
root and its process identifier into a message, which we refer to as the broadcast
message. This message is periodically sent to all forward neighbors of u. When a
process v receives a broadcast message whose process identifier is u, this message
is forwarded to all the forward neighbors of v, provided the message was received
from neighbor b[u].v. In this way, the broadcast message is forwarded only along
the spanning tree T.u, and the propagation of this message is cycle free. Note
that the size of the broadcast message is O(1).

The above two messages, namely the spanning-tree and broadcast message,
are all that is required to implement the process network in a message passing
model. We next address the storage requirements of each process.

Each process is required to store its d array, whose size is O(n). With respect
to the distances to the root (i.e., array X), note that when a process computes
its distance to the root, it only requires the distance to the root of each of its
forward neighbors. Therefore, in a message passing implementation, the distance
to the root broadcasted by any other process is simply forwarded as soon as it
is received. Thus, only the distances of the forward neighbors need to be stored.

Furthermore, with a more careful implementation, only the distance to the
root of the next hop neighbor (next.u) needs to be stored. If process u receives
a broadcast from a forward neighbor indicating a smaller distance to the root
than that of neighbor next.u, then next.u is updated to this neighbor, and the
new distance is recorded. Thus, we require O(1) storage for the distance to the
root.

In our network, we considered only a single process (the root process) as
the destination. To allow any process to be a destination, each process needs to
maintain the distance to each destination. Thus, instead of O(1) storage for the
distance to the root mentioned above, we require O(n) storage, i.e., O(1) stor-
age for each of the n possible destinations. Note, however, that array d remains
as before, since our original network allows every process to perform a broad-
cast. Since array d requires O(n) storage, the storage remains O(n). In addition,
the broadcast message would include the distance to each destination, and thus
would be of size O(n). The spanning-tree message remains O(n). Therefore, since
vectors of size n are sent to each neighbor, this network falls into the category
of distance-vector routing networks.

One final issue remains to be addressed, and that is the detection of channel
failure. Thus far, we have assumed that if a process v is in the forward neighbor
set F.u of a process u, then the channel from u to v is in working order. This is
possible in networks where the channel is implemented by a lower layer, and the

60 Jorge A. Cobb and Mohamed G. Gouda

status of this channel is monitored by the lower layer (e.g., the channel could be
an ATM circuit, and the status of the channel is maintained by the ATM layer).
If the lower layer at u detects that the channel from u to v has failed, then v is
removed from F.u. However, if the lower layer does not provide the capability of
monitoring the status of the channel, process u can monitor the status as follows.
When process v sends a broadcast message, in addition to including its distance
to each destination, it also includes a list of its backward neighbors from whom
it has recently received messages. When process u receives a broadcast from v,
it checks if u is in the list of backward neighbors of v. If so, then the channel
from u to v is in working order.

Note that if the broadcast message includes the list of backward neighbors,
we may choose to only include this list in the message, and not include the dis-
tance to each destination. In this case, each process would have to collect the
list of neighbors from each process in the network, build in its memory a graph
representing the network topology, and choose its next hop neighbor using Di-
jkstra’s [13] shortest path algorithm. In this case, the storage required would
increase to O(n2), and the network would fall into the category of link-state
routing networks.

Finally, note that if a list of neighbors is required in the broadcast message,
either because we have a link-state network or we require to detect the status of
the channel in a distance-vector network, then the requirements for a process u
to be in the routing tree are different than those presented in Section 3. In this
case, a path must exist from u to the root and a path must also exist from the
root to u.

9 Concluding Remarks

In this paper, we presented a network of processes that constructs a routing
tree to a given destination, even though the network is directed, i.e., communi-
cation between neighboring processes may be unidirectional. We presented our
network in three steps. First, we presented a network that allows each process
to broadcast a value to all other processes. Next, we presented a network where
each process can compute its distance to the destination, and broadcast this
distance to all processes. Finally, we presented a network where a routing tree
is constructed by having each process choose its parent in the routing tree in
accordance to its distance to the destination.

Since an undirected network is a special case of a directed network, the net-
work of processes we presented in Section 7 will correctly build a routing tree in
an undirected network. However, it will not do so in the most efficient way, since
processes are tailored towards a directed network. In future work, we will inves-
tigate networks of processes whose behavior will vary depending on the number
of processes that have unidirectional communication with their neighbors. That
is, processes will adapt to the “level” of unidirectional communication in the
network, and adapt their behavior accordingly to improve performance.

Stabilization of Routing in Directed Networks 61

Routing in directed networks is a fertile area of research, and much is yet
to be done. Existing approaches assume bidirectional communication between
neighbors, and thus will fail or exhibit different behaviors in directed networks.
In addition, other distributed algorithms, in addition to routing, may be affected
by directed networks. Two reasons for this may be routing asymmetry, i.e., for
two nodes u and v, the path from u to v is not necessarily the same as the path
from v to u, and one-way reachability, that is, there is a path from u to v but
there is no path from v to u.

References

1. Cobb J., Waris M.: Propagated Timestamps: A Scheme for the Stabilization of
Maximum-Flow Routing Protocols. In: Proceedings of the Third Workshop on
Self-Stabilizing Systems (1997) pp. 185-200

2. Dolev S.: Self-Stabilization. MIT press, Cambridge, MA (2000)
3. Duros E., Dabbous W.: Supporting Unidirectional Links in the Internet. In: Pro-
ceedings of the First International Workshop on Satellite-Based Information Ser-
vices (1996)

4. Duros E., Dabbous W., Izumiyama H., Fujii N., and Zhang Y.: A Link Layer Tun-
neling Mechanism for Unidirectional Links. Internet Request for Comments (RFC)
3077 (2001)

5. Garcia-Luna-Aceves, J.J.: Loop-Free Routing Using Diffusing Computations.
IEEE/ACM Transactions on Networking. Vol 1 No. 1 (Feb. 1993)

6. Hedrick C.: Routing Information Protocol. Internet Request for Comments (RFC)
1058 (1988)

7. Moy J: OSPF Version 2. Internet Request for Comments (RFC) 1247 (1991)
8. Perkins C., Bhagwat P.: Highly Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers. In: Proceedings of the ACM SIGCOMM
Conference on Communication Architectures, Protocols and Applications (1994)

9. Prakash R.: Unidirectional Links Prove Costly in Wireless Ad Hoc Networks. In:
Proceedings of the ACM International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications (DIAL M for Mobility)
(1999)

10. Prakash R., Singhal M.: Impact of Unidirectional Links in Wireless Ad Hoc Net-
works. DIMACS Series in Discrete Mathematics and Computer Science, Vol. 52
(2000)

11. Schneider M.: Self-Stabilization. In: ACM Computing Surveys Vol. 25 No. 1 (1983)
12. Schneider M., Gouda M.: Stabilization of Maximal Metric Trees. In: Proceedings

of the International Conference on Distributed Computing Systems, Workshop on
Self-Stabilizing Systems (1999)

13. Tanenbaum A.: Computer Networks (3rd edition). Prentice Hall (1996)
14. Vutukury S., Garcia-Luna-Aceves J.J.: A Simple Approximation to Minimum De-

lay Routing. In: Proceedings of the ACM SIGCOMM Conference on Communica-
tion Architectures, Protocols and Applications (1999)

Appendix: Proof of Stabilization

Let Pmin(v, u) be a shortest path from v to u. Let G(v) be the graph obtained
from all edges of the form (b[v].u, u) for every process u, u �= v. Let PG(v, u) be

62 Jorge A. Cobb and Mohamed G. Gouda

the path from v to u in G(v)1. If no such path exists, then PG(v, u) is the empty
path. Let btree denote the following predicate.

(∀u :: d[u].u = 0) ∧
(∀ v, u : v �= u ∧ Pmin(v, u) = ∅ : d[v].u = n) ∧
(∀ v, u : v �= u ∧ Pmin(v, u) �= ∅ :

PG(v, u) �= ∅ ∧ |PG(v, u)| = |Pmin(v, u)| = d[v].u)

Lemma 1.

1. btree is stable
2. true converges to btree

Proof. We focus only on arrays d.u and b.u of each process u, since only these
variables are involved in btree. We first show the stability of btree.

Consider the first action. This action affects only d[u].u. From btree, d[u].u =
0 before the action. Thus, executing the action does not change d[u].u.

Consider the second action. This action affects only d[v].u. We have two
cases.

1. Consider first d[v].w < n. In this case, from btree, PG(v, w) �= ∅, and
d[v].w = |PG(v, w)| = |Pmin(v, w)|. Since PG(v, w) �= ∅ and b[v].u = w,
then PG(v, u) = PG(v, w); (w, u), and thus Pmin(v, u) �= ∅. This, along with
btree, implies that d[v].u = |Pmin(v, u)| = |PG(v, u)| = |PG(v, w)| + 1 =
d[v].w + 1. Also, since |Pmin(v, u)| < n, then d[v].w + 1 < n, and hence,
d[v].w + 1 = d[v].w ⊕ 1. Thus, d[v].u is not changed when it is assigned
d[v].w ⊕ 1.

2. Consider instead d[v].w = n. In this case, from btree, Pmin(v, w) = ∅. Hence,
PG(v, w) = ∅. From b[v].u = w, we have PG(v, u) = ∅. From btree, if
Pmin(v, u) �= ∅, then PG(v, u) �= ∅. Thus, we must have Pmin(v, u) = ∅.
Again, from btree, d[v].u = n, and thus d[v].u does not change when it is
assigned d[v].w ⊕ 1.

Consider now the third action. Again, we have two cases.

1. Consider first d[v].u < n. From btree, d[v].u = |Pmin(v, u)| = |PG(v, u)|.
From the action’s guard, d[v].w ⊕ 1 < d[v].u, which implies d[v].w < n,
and from btree, d[v].w = |PG(v, w)| = |Pmin(v, w)|. Note, however, that
since w is a backward neighbor of u, d[v].w ⊕ 1 < d[v].u implies that
|PG(v, w); (w, u)| < |PG(v, u)|, which is impossible, since PG(v, u) is the
shortest path from v to u. Thus, the guard must be false if btree holds.

2. Consider now d[v].u = n. From btree, there is no path from v to u. However,
if d[v].w⊕1 < d[v].u, then d[v].w < n, and btree implies there is a path from
v to w, and thus there is also a path from v to u. Thus, again, the guard
must be false if btree holds.

1 Note that at most only one such path may exist, since u has only one incoming edge
in G(v), and v has no incoming edge.

Stabilization of Routing in Directed Networks 63

Since no action falsifies btree, btree is stable. We now show that true con-
verges to btree. First, note that the first action of u assigns zero to d[u].u. No
other action modifies d[u].u, thus, for all u, true converges to d[u].u = 0, and
d[u].u = 0 is stable.

Next, define btree(v, i), where 1 ≤ i < n, as follows:

(∀u : u �= v ∧ (Pmin(v, u) = ∅ ∨ |Pmin(v, u)| > i) : d[v].u > i) ∧
(∀u : u �= v ∧ Pmin(v, u) �= ∅ ∧ |Pmin(v, u)| ≤ i :

d[v].u = |Pmin(v, u)| = |PG(v, u)|)
We show that eventually, for all i, btree(v, i) holds and continues to hold. We
show this by induction.

As a base case, consider i = 1. Consider any process u, u �= v. The second
and third actions assign at least 1 to d[v].u. Thus, we can assume we reach a
state where d[v].u ≥ 1 holds and continues to hold for all processes u, u �= v.

Consider a process u which is not a forward neighbor of v. Thus, for any
backward neighbor w of u, d[v].w ≥ 1, and thus d[v].u ≥ 2 after the second
or third action. Thus, d[v].u ≥ 2 will hold and continue to hold, as desired in
btree(v, 1).

Consider now a process u which is a forward neighbor of v. We have two
cases.

1. Assume u executes its second or third action with parameter w = v.
Then, since b[v].v = 0, we obtain b[v].u = v ∧ d[v].u = 1, thus, d[v].u =
|Pmin(v, u)| = |Pg(v, u)| as desired by btree(v, 1). Note that this contin-
ues to hold for the following reason. First, the second action of u does not
change b[v].u, and it assigns d[v].v ⊕ 1 = 1 to d[v].u. The third action of u
is not enabled, since for any backward neighbor w of u (including w = v),
d[v].w ⊕ 1 ≥ 1 = d[v].u.

2. Assume u executes its second or third action with parameter w �= v. Since
d[v].w ≥ 1, it results in b[v].u = w ∧ d[v].u > 1. Since d[v].u > 1, then the
third action of u is enabled with w = v, and must be eventually executed,
after which b[v].u = v ∧ d[v].u = 1, as shown above. Also, this continues to
hold as shown above.

For the induction hypothesis, we assume 1 < i < n, and btree(v, i− 1) holds.
Consider first any process u, where u �= v ∧ Pmin(v, u) = ∅. For any back-

ward neighbor w of u, Pmin(v, w) = ∅, and from btree(v, i − 1), d[v].w ≥ i − 1.
Hence, when process u executes its second or third action, d[v].u ≥ i, as desired.
Since d[v].w ≥ i − 1 will continue to hold, then so will d[v].u ≥ i.

Consider next any process u, u �= v, where Pmin �= ∅ ∧ |Pmin(v, u)| >
i > i − 1. In this case, any backward neighbor w of u must have Pmin(v, u) =
∅ ∨ |Pmin(v, w)| ≥ i > i − 1, and from btree(v, i − 1), d[v].w ≥ i, and this con-
tinues to hold. When u executes its second or third action, d[v].u > i will result.
Thus, d[v].u > i will hold and continue to hold.

Consider now a process u with Pmin �= ∅ ∧ |Pmin(v, u)| = i. This implies
that for all backward neighbors w of u, Pmin(v, w) = ∅ ∨ |Pmin(v, w)| ≥ i − 1.

64 Jorge A. Cobb and Mohamed G. Gouda

From btree(v, i− 1), d[v].w ≥ i− 1. In addition, u must have a backward neigh-
bor y such that Pmin(v, y) �= ∅ ∧ |Pmin(v, y)| = i − 1. From btree(v, i − 1),
i − 1 = d[v].y = |PG(v, y)| = |Pmin(v, y)| holds and will continue to hold. We
have two cases.

1. Assume the second or third action of u is executed where w = y. Then,
after the action is executed, b[v].u = y ∧ d[v].u = i, and hence, PG(v, u) =
PG(v, y); (y, u) ∧ |PG(v, u)| = i = |Pmin(v, u)| as desired for btree(v, i).
Furthermore, executing the second action does not change these values,
and note that the third action cannot execute, since all backward neigh-
bors w of u must have d[v].w ≥ i − 1, and thus, d[v].w ⊕ 1 ≥ d[v].u. Hence
i = d[v].u = |Pmin(v, u)| = |PG(v, u)| will continue to hold forever.

2. Assume the second or third action of u is executed for some backward neigh-
bor w, where w �= y. In this case, Pmin(v, w) = ∅ ∨ |Pmin(v, w)| = i. From
btree(v, i−1), d[v].w ≥ i. Then, after the action, d[v].u ≥ i+ 1. Note that in
this case, the third action is enabled with w = y, and it will eventually be
executed. As argued above, i = d[v].u = |Pmin(v, u)| = |PG(v, u)| will then
hold and continue to hold.

This finishes the induction step, and thus the induction proof.
Note that btree = (∀ v, i : 1 ≤ i < n : btree(v, i)) ∧ (∀u :: d[u].u = 0). Thus,

from the above, eventually we reach a state where btree holds and continues to
hold.

Corollary 1. For all u, v, and y, where u �= v,

btree ∧ b[v].u = y is stable

Proof. Only the third action affects b[v].u, so we focus on this action.
Assume first that Pmin(v, u) = ∅. Thus, Pmin(v, w) = ∅. From btree, d[v].u =

n ∧ d[v].w = n. Thus, the third action is not enabled.
Assume next that Pmin(v, u) �= ∅. From btree, d[v].u = |Pmin(v, u)| < n. For

any backward neighbor w of u, if the guard d[v].w ⊕ 1 < d[v].u is true, then this
implies d[v].w < n − 1, and from btree, d[v].w = |Pmin(v, w)|. Combining the
above, |Pmin(v, w)| ⊕ 1 < |Pmin(v, u)|. This is not possible since Pmin(v, u) is a
minimum path. Thus, the third action is not enabled.

Lemma 2.

1. Consider a computation in which btree ∧ X [v].v ≤ k holds for some k and
continues to hold. Let u �= v and PG(v, u) �= ∅. Then, for any y, where y �= v
and y is a process in PG(v, u), X [v].y ≤ k will hold and continue to hold.

2. Consider a computation in which btree ∧ X [v].v ≥ k holds for some k and
continues to hold. Let u �= v and PG(v, u) �= ∅. Then, for any y, where y �= v
and y is a process in PG(v, u), X [v].y ≥ k will hold and continue to hold.

Stabilization of Routing in Directed Networks 65

Proof. We consider only part 2 above. The proof for part 1 is similar.
From Lemma 1 and Corollary 1, btree continues to hold, and PG(v, u) does

not change. Also, only the second action modifies X [v].u, so we focus on this
action.

The proof is by induction on the length of PG(v, u). Assume that PG(v, u) =
(v, u), i.e., b[v].u = v. If X [v].u �= X [v].v, then the second action of u is enabled
with v = w. When this action executes, X [v].u = X [v].v ≥ k. If this action be-
comes disabled before being executed, then from its guard it must also be that
X [v].u = X [v].v ≥ k. Thus, X [v].u ≥ k will hold and continue to hold.

For the induction step, let w = b[v].u, and let |PG(v, u)| = i, i > 1. We assume
the lemma holds for all paths in G(v) of length i − 1, in particular, PG(v, w).
Thus, eventually, X [v].w ≥ k holds, and it continues to hold. A similar argument
as the one above, except that process u assigns X [v].w to X [v].u, shows that
X [v].u ≥ k will hold and continue to hold. This concludes the proof.

Let Si, where 0 ≤ i < n, be a set of processes defined as follows.

S0 = { 0 }
S1 = { u | u is a backwards neighbor of process 0} ∪S0

Si = { u | there is a path from a backwards neighbor v
of the root to u, and a path of length at most i
from u to the root via v } ∪S1, 1 < i < n

Note that a process u is in the routing tree iff u ∈ Sn−1.

Lemma 3. For every i, 1 < i < n,

u ∈ Si ⇔ (u ∈ S1 ∨ (∃ v : v ∈ F.u : v ∈ Si−1 ∧ Pmin(v, u) �= ∅))

Proof. Consider first the following implication.

u ∈ Si ⇐ (u ∈ S1 ∨ (∃ v : v ∈ F.u : v ∈ Si−1 ∧ Pmin(v, u) �= ∅))

If u is in S1 then, from the definition of Si, u is in Si for any i, i > 1. Instead,
assume u is not in S1. Thus, assume there exists a v satisfying the quantification.
We are given that v ∈ Si−1. Note that i− 1 > 0, since otherwise, v would be the
root, and u would be in S1.

Assume first that i−1 = 1. In this case, v is a backward neighbor of the root,
and from Pmin(v, u) �= ∅, there is a path from v to u. Thus, u is in Si. Assume
instead that i − 1 > 1. Then there is a path of length i − 1 from v to the root
via a backward neighbor w of the root, and a path from w to v. Since v ∈ F.u
and Pmin(v, u) �= ∅, there is a path of length i from u to the root via w (and via
v), and also a path from w to u (via v). Thus, u is in Si.

Consider now the other implication.

u ∈ Si ⇒ (u ∈ S1 ∨ (∃ v : v ∈ F.u : v ∈ Si−1 ∧ Pmin(v, u) �= ∅))

If u is in S1, then we are done. Assume instead that u is in Si, but u is not in S1.
Then, since u belongs to Si, there is a path from u to the root via a backward

66 Jorge A. Cobb and Mohamed G. Gouda

neighbor w of the root, and the length of this path is i. Let v be the next hop
from u to w along this path. Thus, there is a path of length i − 1 from v to the
root via w. Also, since there is a path from w to u, then there is a path from v
to u. Hence, Pmin(v, u) �= ∅ and v is in Si−1.

Combining both implications we obtain the desired result.

Theorem 1. For every i, 0 ≤ i < n, the distance vector network stabilizes to
the following predicate.

(∀u :: u ∈ Si ⇔ X [u].u ≤ i)

Proof. X [u].u is changed only in the first action, so we focus only on this action.
Also, from Lemma 1, the network stabilizes to btree. Thus, consider a computa-
tion starting from a state in which btree holds.

Consider first i = 0. The only process in S0 is the root process 0. The defi-
nition of function f ensures that X [0].0 is assigned 0 regardless of the network
state. Thus, X [0].0 = 0 is stable. For any process u, u �= 0, f assigns at least 1
to X [u].u. Thus, u ∈ S0 ⇔ X [u].u ≤ 0 will hold and continue to hold.

Consider next i = 1. Let u ∈ S1. By the definition of S1, the root is a forward
neighbor of u. From the definition f , X [u].u will be assigned 1 regardless of the
network state. Thus, X [u].u = 1 will hold and continue to hold. Consider now
any process u, where u /∈ S1. Thus, for every forward neighbor v of u, v �= 0, i.e.,
v /∈ S0, and from above, X [v].v ≥ 1 will hold and continue to hold. If there is a
path from v to u then, from Lemma 2 part 2, eventually X [v].u ≥ 1 holds and
continues to hold. If there is no path from v to u, then from btree, d[v].u = n
holds and continues to hold. Thus, from the definition of f , X [u].u will always
be assigned at least 2, i.e., X [u].u > 1 will hold and continue to hold.

The remainder of the proof is by induction over i, where 1 ≤ i < n. We show
that for each i, the network stabilizes to (∀u :: u ∈ Si ⇔ X [u].u ≤ i). The base
case, i = 1, was shown above. Thus, consider 1 < i < n, and assume we have a
computation where we have reached a state where (∀u :: u ∈ Si−1 ⇔ X [u].u ≤
i − 1) holds and continues to hold.

Consider a process u, u ∈ Si, and u /∈ Si−1. From the definition of Si, and
from Lemma 3, a forward neighbor v belongs to Si−1 and there is a path from v
to u. From the induction hypothesis, X [v].v ≤ i− 1, and from btree, d[v].u < n.
Furthermore, from Lemma 2 part 1, eventually X [v].u ≤ i− 1 holds and contin-
ues to hold. Thus, from the definition of f , X [u].u is assigned a value at most i,
and this continues to hold.

Consider now a process u, u /∈ Si. From Lemma 3, u /∈ S1, and for all for-
ward neighbors v of u, v /∈ Si−1 ∨ Pmin(v, u) = ∅. If v /∈ Si−1, then from the
induction hypothesis, X [v].v > i − 1, i.e., X [v].v ≥ i, holds and continues to
hold, and from Lemma 2 part 2, eventually X [v].u ≥ i holds and continues to
hold. If Pmin(v, u) = ∅, then from btree, d[v].u = n. Hence, from f , eventually
X [u].u > i holds and continues to hold.

Thus, by induction, for all i, 0 ≤ i < n, the network stabilizes to (∀u :: u ∈
Si ⇔ X [u].u ≤ i).

	Introduction
	Directed Networks
	Routing Trees
	Network Notation
	Directed Broadcast
	Distance Vectors
	Maintaining a Routing Tree
	Message Passing Implementation
	Concluding Remarks

